
Induksi Matematika, ada yang tau apa itu induksi matematika?, Oke gini deh, misal kita ingin menjumlahkan $n$ buah bilangan orisinil pertama, kemudian kita nyari formulanya dari menyebarkan sumber, dan ternyata kita menemukan sebuah formula bahwa jumlah $n$ buah bilangan orisinil pertama sanggup ditentukan dengan formula $S_n=\frac{1}{2} n (n+1)$, nah pertanyaannya, apakah kalian percaya/yakin bahwa formula itu benar dan berlaku untuk setiap bilangan orisinil $n$ ? kita perlu sebuah tools untuk menandakan kebenaran formula tersebut, ya salah satunya ialah dengan Induksi Matematika. Jadi kalau berdasarkan bahasa buku sanggup dibilang induksi matematika ialah cara menandakan suatu pernyataan $P(n)$ selalu benar untuk setiap bilangan orisinil $n$.
Waktu masih kecil mungkin kalian pernah bermain domino dengan cara menyusunnya menyerupai gambar di atas. Nah, induksi matematika analoginya menyerupai mirip permainan tersebut. Analoginya menyerupai ini:
- Dalam permainan domino, yang perlu kita lakukan ialah menjatuhkan domino pertama. Begitu pula dalam induksi matematika, yang pertama kita lakukan ialah menandakan pernyataan $P(n)$ bernilai benar untuk $n=1$.
- Jika domino pertama jatuh, maka domino kedua juga harus jatuh, Jika domino kedua jatuh, maka domino ketiga juga harus jatuh, demikian seterusnya. sanggup kita simpulkan, jikalau domino ke-$k$ jatuh, maka domino ke-$(k+1)$ juga harus jatuh, dengan demikian kita sanggup menjamin bahwa seluruh domino dalam gugusan tersebut juga niscaya jatuh. Demikian juga dalam induksi matematika, kita harus menandakan jikalau $P(k)$ benar, maka $P(k+1)$ juga harus benar. Dengan terbuktinya pernyataan ini, kita sanggup menjamin bahwa pernyataan $P(n)$ selalu benar untuk setiap bilangan orisinil $n$.
Analogi menyerupai domino tadi, merupakan analogi pembuktian dengan induksi matematika sederhana. Sementara pada blog ini kita akan membahas lnduksi matematika yang lebih lengkap, mencakup induksi matematika sederhana, induksi matematika umum, dan induksi matematika kuat.
Induksi Matematika Sederhana
berdasarkan analogi di atas, kita sanggup menyimpulkan bahwa langkah-langkah pembuktian dengan induksi sederhana untuk menandakan suatu pernyataan $P(n)$ ialah sebagai berikut:
$$1+2+3+\cdots+n=\frac{1}{2} n(n+1)$$
Jawab:
Kita gunakan induksi matematika, dengan
$$P(n)\equiv 1+2+3+\cdots+n=\frac{1}{2} n(n+1)$$
Pertama, kita akan menandakan kebenaran $P(1)$
$P(1)\equiv 1=\frac{1}{2}(1)(1+1)=1$ (benar)
Kedua, kita asumsikan $P(k)$ benar.
$P(k)\equiv 1+2+3+\cdots+k=\frac{1}{2}k(k+1)$
dengan memakai hal di atas, kita akan menandakan $P(k+1)$, yaitu:
$P\left ( k+1 \right ) \equiv 1+2+3+...+k+\left ( k+1 \right )=\frac{1}{2}\left ( k+1 \right )\left ( \left ( k+1 \right )+1 \right )$
dari persamaan terakhir, maka:
Ruas Kiri
$\underset{\frac{1}{2}k(k+1)}{\underbrace{1+2+3+...k}}+\left ( k+1 \right )\\=\frac{1}{2}k\left ( k+1 \right )+\left ( k+1 \right )\\=\left ( k+1 \right )\left ( \frac{1}{2}k+1 \right )\\=\frac{1}{2}\left ( k+1 \right )\left ( k+2 \right )$
Ruas Kanan:
$\frac{1}{2}\left ( k+1 \right )\left ( \left (k+1 \right )+1 \right )\\=\frac{1}{2}\left ( k+1 \right )\left ( k+2 \right )$
karena ruas kiri $=$ ruas kanan, maka pernyataan tersebut benar untuk setiap bilangan orisinil $n$
- Buktikan bahwa $P(1)$ benar. (langkah dasar)
- Misalkan $P(k)$ benar, gunakan hal ini untuk menandakan bahwa $P(k+1)$ juga benar (langkah induksi)
Contoh 1
Buktikan bahwa untuk setiap setiap bilangan orisinil $n$ berlaku:$$1+2+3+\cdots+n=\frac{1}{2} n(n+1)$$
Jawab:
Kita gunakan induksi matematika, dengan
$$P(n)\equiv 1+2+3+\cdots+n=\frac{1}{2} n(n+1)$$
Pertama, kita akan menandakan kebenaran $P(1)$
$P(1)\equiv 1=\frac{1}{2}(1)(1+1)=1$ (benar)
Kedua, kita asumsikan $P(k)$ benar.
$P(k)\equiv 1+2+3+\cdots+k=\frac{1}{2}k(k+1)$
dengan memakai hal di atas, kita akan menandakan $P(k+1)$, yaitu:
$P\left ( k+1 \right ) \equiv 1+2+3+...+k+\left ( k+1 \right )=\frac{1}{2}\left ( k+1 \right )\left ( \left ( k+1 \right )+1 \right )$
dari persamaan terakhir, maka:
Ruas Kiri
$\underset{\frac{1}{2}k(k+1)}{\underbrace{1+2+3+...k}}+\left ( k+1 \right )\\=\frac{1}{2}k\left ( k+1 \right )+\left ( k+1 \right )\\=\left ( k+1 \right )\left ( \frac{1}{2}k+1 \right )\\=\frac{1}{2}\left ( k+1 \right )\left ( k+2 \right )$
Ruas Kanan:
$\frac{1}{2}\left ( k+1 \right )\left ( \left (k+1 \right )+1 \right )\\=\frac{1}{2}\left ( k+1 \right )\left ( k+2 \right )$
karena ruas kiri $=$ ruas kanan, maka pernyataan tersebut benar untuk setiap bilangan orisinil $n$
Contoh 2
Buktikan bahwa "untuk semua bilangan orisinil $n$, jumlah $n$ bilangan ganjil berurutan, pertama sama dengan $n^2$"
Jawab:
kalimat di atas sanggup kita tulis:
$$1+3+5+\cdots +(2n-1)=n^2$$
Pertama, kita akan menandakan kebenaran $P(1)$
$P(1)\equiv(2\times 1 - 1)=1^2=1$ (benar)
Kedua, kita asumsikan $P(k)$ benar.
$ P(k)\equiv 1+3+5+\cdots+(2k-1)=k^2 $
Dengan memakai hal ini, kita akan menandakan $P(k+1)$:
$P(k+1) \equiv 1+3+5+\cdots +(2k-1)+(2(k+1-1))=(k+1)^2$
dari persamaan terakhir, maka:
Ruas Kiri
$\underset{k^2}{\underbrace{1+3+5+...+\left ( 2k-1 \right )}}+\left ( 2\left ( k+1 \right )-1 \right )\\=k^2+2k+1\\=\left ( k+1 \right )^2$
Ruas Kanan
$(k+1)^2$
karena ruas kiri $=$ ruas kanan, maka pernyataan tersebut benar untuk setiap bilangan orisinil $n$
Kesalahan dalam Pembuktian Induksi Matematika
Perlu diperhatikan, kedua langkah dalam pembuktian memakai induksi matematika yaitu langkah dasar dan langkah induksi, kedua langkah tersebut harus dilakukan. Seperti halnya analogi jatuhnya domino tadi, jikalau kita tidak menjatuhkan domino pertama, dan eksklusif menjatuhkan domino bab tengah atau urutan kesekian, maka tidak semua domino akan terjatuh. Hal tersebut mengatakan bahwa kedua langkah tersebut penting untuk dilakukan. Sebagai contoh, kini kita akan menandakan suatu pernyataan dengan induksi matematika tanpa langkah dasar:
Buktikan bahwa untuk setiap bilangan orisinil $n$ berlaku:
$$1+2+3+...+n=\frac{1}{8}(2n+1)^2$$
Jawab:
Kita gunakan induksi matematika:
$$P(n)=1+2+3+\cdots +n=\frac{1}{8}\left ( 2n+1 \right )^2$$
Langkah Dasar : (untuk bab ini langkah dasar kita coba lewati)
Langkah Induksi:
Misalkan $P(k)$ benar.
$P(k) \equiv 1+2+3+\cdots +k=\frac{1}{8}\left ( 2k+1 \right )^{2}$
Persamaan di atas kita gunakan untuk menandakan $P(k+1)$:
$P(k+1)\equiv 1+2+3+\cdots+k+(k+1)=\frac{1}{8}\left ( 2k+3 \right )^2$
Ruas Kiri:
$\underset{\frac{1}{8}\left ( 2k+1 \right )^2}{\underbrace{1+2+3+\cdots+k}}+\left ( k+1 \right )\\=\frac{1}{8}\left ( 2k+1 \right )^2+\left ( k+1 \right )\\=\frac{1}{8}\left ( 4k^2+4k+1+8k+8 \right )\\=\frac{1}{8}\left ( 4x^2+12x+9 \right )\\=\frac{1}{8}\left ( 2x+3 \right )^2$
dengan terang kita lihat bahwa hasil ruas kiri sama dengan ruas kanan, seolah-olah pernyataan tersebut terbukti benar, namun jikalau kita substitusikan $n=1$ maka kita peroleh
$P(1)\equiv 1=\frac{1}{8}(2\times 1+1)^2\Leftrightarrow 1=\frac{9}{8}$ (salah)
dengan demikian, kedua langkah induksi harus kita lakukan untuk memastikan kebenaran suatu pernyataan.
Induksi Matematika Umum/dirapatkan
Sekarang timbul pertanyaan, apakah untuk langkah dasar harus selalu memakai $n=1$? jawabannya tergantung pernyataan yang akan kita buktikan. Jika pernyataan yang akan kita buktikan "berlaku untuk semua bilangan asli" maka ya, langkah dasar kita gunakan $n=1$. Namun adakalanya pernyataan yang akan kita buktikan tidak berlaku untuk semua bilangan orisinil $n$, melainkan terdapat suatu nilai terkecil yang menjadi batas bawah dimana pernyataan tersebut berlaku. Misalnya nilai terkecil tersebut kita misalkan sebagai $n_0$ dengan $n_0$ bilangan bulat, maka langkah dasar kita ganti dengan menandakan kebenaran $P(n_0)$. Secara umum langkah-langkahnya sanggup kita tulis sebagai berikut:
langkah-langkah di atas, disebut sebagai langkah-langkah pembuktian induksi matematika umum.
semoga bermanfaat
$\blacksquare$ Denih Handayani, 26 Juli 2017
Jawab:
kalimat di atas sanggup kita tulis:
$$1+3+5+\cdots +(2n-1)=n^2$$
Pertama, kita akan menandakan kebenaran $P(1)$
$P(1)\equiv(2\times 1 - 1)=1^2=1$ (benar)
Kedua, kita asumsikan $P(k)$ benar.
$ P(k)\equiv 1+3+5+\cdots+(2k-1)=k^2 $
Dengan memakai hal ini, kita akan menandakan $P(k+1)$:
$P(k+1) \equiv 1+3+5+\cdots +(2k-1)+(2(k+1-1))=(k+1)^2$
dari persamaan terakhir, maka:
Ruas Kiri
$\underset{k^2}{\underbrace{1+3+5+...+\left ( 2k-1 \right )}}+\left ( 2\left ( k+1 \right )-1 \right )\\=k^2+2k+1\\=\left ( k+1 \right )^2$
Ruas Kanan
$(k+1)^2$
karena ruas kiri $=$ ruas kanan, maka pernyataan tersebut benar untuk setiap bilangan orisinil $n$
Kesalahan dalam Pembuktian Induksi Matematika
Perlu diperhatikan, kedua langkah dalam pembuktian memakai induksi matematika yaitu langkah dasar dan langkah induksi, kedua langkah tersebut harus dilakukan. Seperti halnya analogi jatuhnya domino tadi, jikalau kita tidak menjatuhkan domino pertama, dan eksklusif menjatuhkan domino bab tengah atau urutan kesekian, maka tidak semua domino akan terjatuh. Hal tersebut mengatakan bahwa kedua langkah tersebut penting untuk dilakukan. Sebagai contoh, kini kita akan menandakan suatu pernyataan dengan induksi matematika tanpa langkah dasar:
Buktikan bahwa untuk setiap bilangan orisinil $n$ berlaku:
$$1+2+3+...+n=\frac{1}{8}(2n+1)^2$$
Jawab:
Kita gunakan induksi matematika:
$$P(n)=1+2+3+\cdots +n=\frac{1}{8}\left ( 2n+1 \right )^2$$
Langkah Dasar : (untuk bab ini langkah dasar kita coba lewati)
Langkah Induksi:
Misalkan $P(k)$ benar.
$P(k) \equiv 1+2+3+\cdots +k=\frac{1}{8}\left ( 2k+1 \right )^{2}$
Persamaan di atas kita gunakan untuk menandakan $P(k+1)$:
$P(k+1)\equiv 1+2+3+\cdots+k+(k+1)=\frac{1}{8}\left ( 2k+3 \right )^2$
Ruas Kiri:
$\underset{\frac{1}{8}\left ( 2k+1 \right )^2}{\underbrace{1+2+3+\cdots+k}}+\left ( k+1 \right )\\=\frac{1}{8}\left ( 2k+1 \right )^2+\left ( k+1 \right )\\=\frac{1}{8}\left ( 4k^2+4k+1+8k+8 \right )\\=\frac{1}{8}\left ( 4x^2+12x+9 \right )\\=\frac{1}{8}\left ( 2x+3 \right )^2$
dengan terang kita lihat bahwa hasil ruas kiri sama dengan ruas kanan, seolah-olah pernyataan tersebut terbukti benar, namun jikalau kita substitusikan $n=1$ maka kita peroleh
$P(1)\equiv 1=\frac{1}{8}(2\times 1+1)^2\Leftrightarrow 1=\frac{9}{8}$ (salah)
dengan demikian, kedua langkah induksi harus kita lakukan untuk memastikan kebenaran suatu pernyataan.
Induksi Matematika Umum/dirapatkan
Sekarang timbul pertanyaan, apakah untuk langkah dasar harus selalu memakai $n=1$? jawabannya tergantung pernyataan yang akan kita buktikan. Jika pernyataan yang akan kita buktikan "berlaku untuk semua bilangan asli" maka ya, langkah dasar kita gunakan $n=1$. Namun adakalanya pernyataan yang akan kita buktikan tidak berlaku untuk semua bilangan orisinil $n$, melainkan terdapat suatu nilai terkecil yang menjadi batas bawah dimana pernyataan tersebut berlaku. Misalnya nilai terkecil tersebut kita misalkan sebagai $n_0$ dengan $n_0$ bilangan bulat, maka langkah dasar kita ganti dengan menandakan kebenaran $P(n_0)$. Secara umum langkah-langkahnya sanggup kita tulis sebagai berikut:
- Buktikan bahwa $P(n_0)$ benar. (langkah dasar)
- Misalkan $P(k)$ benar untuk $k > n_0$, gunakan hal ini untuk menandakan bahwa $P(k+1)$ juga benar (langkah induksi)
langkah-langkah di atas, disebut sebagai langkah-langkah pembuktian induksi matematika umum.
Contoh 3
Buktikan bahwa
$$n^2 \geq 2n+7$$
untuk setiap bilangan orisinil $n\geq 4$
Jawab:
Kita gunakan induksi matematika umum, dengan:
$P(n)\equiv n^2 \geq 2n+7$
Kita akan menandakan bahwa $P(n)$ benar untuk setiap bilangan orisinil $n$ dengan $ n\geq 4$.
Langkah dasar:
kita akan menandakan kebenaran $P(4)$
$P(4)\equiv 4^2\geq 2(4)+7\Leftrightarrow 16\geq 15$ (Benar)
Langkah Induksi:
kita misalkan $P(k)$ benar untuk $k \geq 4$
$P(k)\equiv k^2 \geq 2k+7$ untuk $ k \geq 4$ (hipotesis)
dari hipotesis kita peroleh:
$k^2 \geq 2k+7$ jikalau kedua ruas kita tambah $2k+1$, maka:
$k^2+2k+1 \geq 4k+8$
$(k+1)^2 \geq 4k+8$
$(k+1)^2 \geq 2(k+1)+2(k+3)$ alasannya $k \geq 4$ maka $k+3 \geq 7$
$(k+1)^2 \geq 2(k+1)+2(7)$
$(k+1)^2 \geq 2(k+1)+14$
dengan memakai hal di atas, kita akan menandakan $P(k+1)$, yitu:
$$P(k+1) \equiv (k+1)^2 \geq 2(k+1)+7$$
karena $(k+1)^2 \geq 2(k+1)+14$ pada hipotesis kita misalkan benar, maka $(k+1)^2 \geq 2(k+1)+7$ benar (karena 14 > 7)
dengan demikian pernyataan tersebut benar untuk setiap bilangan orisinil $n\geq 4$
Induksi Kuat
Jika pada induksi dasar dan induksi umum hipotesis induksi hanya terdiri atas anggapan kebenaran satu pernyataan, yaitu $P(k)$, beda halnya dengan induksi kuat. Pada induksi kuat, dalam hipotesis kita menganggap semua pernyataan benar.
$$P(n_0), P(n_0+1), P(n_0+2), \cdots, P(k)$$
yaitu, semua pernyataan untuk nilai $n$ dari batas bawah hingga dengan $k$ , dan kita juga harus menandakan kebenaran $P(k+1)$.
langkah-langkah dalam induksi kuat:
Jawab:
Langkah dasar:
Jika $n=2$, dan $2$ sendiri merupakan bilangan prima, maka terang pernyataan ini benar.
Langkah induksi:
misalkan pernyataan bahwa $2, 3, 4, \cdots, k$ sanggup dinyatakan sebagai perkalian dari satu atau lebih bilangan prima, akan dibuktikan bahwa $k+1$ sanggup dinyatakan sebagai hasil kali satu atau lebih bilangan prima. Ada dua kemungkinan nilai $k+1$ sanggup prima, atau komposit (bukan prima):
Jika ada kekeliruan, silahkan isi komentar dengan bahagia hati saya mendapatkan kritik dan saran.$$n^2 \geq 2n+7$$
untuk setiap bilangan orisinil $n\geq 4$
Jawab:
Kita gunakan induksi matematika umum, dengan:
$P(n)\equiv n^2 \geq 2n+7$
Kita akan menandakan bahwa $P(n)$ benar untuk setiap bilangan orisinil $n$ dengan $ n\geq 4$.
Langkah dasar:
kita akan menandakan kebenaran $P(4)$
$P(4)\equiv 4^2\geq 2(4)+7\Leftrightarrow 16\geq 15$ (Benar)
Langkah Induksi:
kita misalkan $P(k)$ benar untuk $k \geq 4$
$P(k)\equiv k^2 \geq 2k+7$ untuk $ k \geq 4$ (hipotesis)
dari hipotesis kita peroleh:
$k^2 \geq 2k+7$ jikalau kedua ruas kita tambah $2k+1$, maka:
$k^2+2k+1 \geq 4k+8$
$(k+1)^2 \geq 4k+8$
$(k+1)^2 \geq 2(k+1)+2(k+3)$ alasannya $k \geq 4$ maka $k+3 \geq 7$
$(k+1)^2 \geq 2(k+1)+2(7)$
$(k+1)^2 \geq 2(k+1)+14$
dengan memakai hal di atas, kita akan menandakan $P(k+1)$, yitu:
$$P(k+1) \equiv (k+1)^2 \geq 2(k+1)+7$$
karena $(k+1)^2 \geq 2(k+1)+14$ pada hipotesis kita misalkan benar, maka $(k+1)^2 \geq 2(k+1)+7$ benar (karena 14 > 7)
dengan demikian pernyataan tersebut benar untuk setiap bilangan orisinil $n\geq 4$
Induksi Kuat
Jika pada induksi dasar dan induksi umum hipotesis induksi hanya terdiri atas anggapan kebenaran satu pernyataan, yaitu $P(k)$, beda halnya dengan induksi kuat. Pada induksi kuat, dalam hipotesis kita menganggap semua pernyataan benar.
$$P(n_0), P(n_0+1), P(n_0+2), \cdots, P(k)$$
yaitu, semua pernyataan untuk nilai $n$ dari batas bawah hingga dengan $k$ , dan kita juga harus menandakan kebenaran $P(k+1)$.
langkah-langkah dalam induksi kuat:
- Buktikan bahwa $P(n_0)$ benar. (langkah dasar)
- misalkan $P(n_0), P(n_0+1), P(n_0+2), \cdots, P(k)$ benar untuk $k\geq n_0$ gunakan hal ini untuk menandakan bahwa $P(k+1)$ juga benar (langkah induksi)
Contoh 4
Buktikan bahwa setiap bilangan lingkaran positif $n\geq 2$ sanggup dinyatakan sebagai perkalian dari satu atau lebih bilangan prima.Jawab:
Langkah dasar:
Jika $n=2$, dan $2$ sendiri merupakan bilangan prima, maka terang pernyataan ini benar.
Langkah induksi:
misalkan pernyataan bahwa $2, 3, 4, \cdots, k$ sanggup dinyatakan sebagai perkalian dari satu atau lebih bilangan prima, akan dibuktikan bahwa $k+1$ sanggup dinyatakan sebagai hasil kali satu atau lebih bilangan prima. Ada dua kemungkinan nilai $k+1$ sanggup prima, atau komposit (bukan prima):
- Jika $k+1$ merupakan bilangan prima, maka $k+1$ sanggup dinyatakan sebagai hasil kali bilangan prima, yaitu $k+1$ itu sendiri.
- Jika $k+1$ bukan bilangan prima, maka $k+1$ mempunyai pembagi selain $1$ dan $k+1$ itu sendiri, ada bilangan orisinil lain yang sanggup membagi $k+1$, kita misalkan $a$ dan hasil baginya kita misalkan $b$, dapt kita tulis:$$\frac{k+1}{a}=b\Leftrightarrow k+1=ab$$Karena $2\leq a,b\leq k$, maka nilai $a$ dan $b$ yang mungkin ialah $2, 3, 4, \cdots, k$. berdasarkan hipotesis, kita mengetahui bahwa bilangan-bilangan tersebut merupakan hasil kali satu atau lebih bilangan prima. Maka $ab$ sanggup pula dinyatakan sebagai hasil kali satu atau lebih bilangan prima, dengan demikian $k+1$ juga sanggup dinyatakan sebagai perkalian satu atau lebih bilangan prima.
Jadi, terbukti bahwa $P(k+1)$ benar, maka pernyataan tersebut benar untuk setiap bilangan orisinil $n \geq 2$.
Silakan gabung di Fans Page Facebook, Channel Telegram untuk memperoleh update terbaru, dan Subscribe Channel YouTube m4th-lab untuk memperoleh video pembelajaran matematika secara gratis, untuk mengikuti tautan klik pada tombol di bawah ini:
m4th-lab Youtube Channel:
m4th-lab Facebook Fans Page:
m4th-lab Telegram Channel:
@banksoalmatematika
semoga bermanfaat
$\blacksquare$ Denih Handayani, 26 Juli 2017